A Review: Text Classification on Social Media Data
نویسندگان
چکیده
In today’s world most of us depend on Social Media to communicate, express our feelings and share information with our friends. Social Media is the medium where now a day’s people feel free to express their emotions. Social Media collects the data in structured and unstructured, formal and informal data as users do not care about the spellings and accurate grammatical construction of a sentence while communicating with each other using different social networking websites ( Facebook, Twitter, LinkedIn and YouTube). Gathered data contains sentiments and opinion of users which will be processed using data mining techniques and analyzed for achieving the meaningful information from it. Using Social media data we can classify the type of users by analysis of their posted data on the social web sites. Machine learning algorithms are used for text classification which will extract meaningful data from these websites. Here, in this paper we will discuss the different types of classifiers and their advantages and disadvantages.
منابع مشابه
Author gender identification from text using Bayesian Random Forest
Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...
متن کاملTopic Modeling and Classification of Cyberspace Papers Using Text Mining
The global cyberspace networks provide individuals with platforms to can interact, exchange ideas, share information, provide social support, conduct business, create artistic media, play games, engage in political discussions, and many more. The term cyberspace has become a conventional means to describe anything associated with the Internet and the diverse Internet culture. In fact, cyberspac...
متن کاملRough Set Techniques for Text Classification and Sentiment Analysis in Social Media
Sentiment Analysis (SA) is an ongoing research in the field of text mining and classification. SA finds a computational domain from opinions and subjectivity of text data in online social media. Sentiments are inherited in the form of simple lexicons with symbols and texts having noise of irregular texts in complex forms. It is also seen that the high dimensional growth of lexical blends used b...
متن کاملRole of Text Pre-Processing in Twitter Sentiment Analysis
Ubiquitous nature of online social media and ever expending usage of short text messages becomes a potential source of crowd wisdom extraction especially in terms of sentiments therefore sentiment classification and analysis is a significant task of current research purview. Major challenge in this area is to tame the data in terms of noise, relevance, emoticons, folksonomies and slangs. This w...
متن کاملIntegrating Social Network Structure into Online Feature Selection
Short-texts accentuate the challenges posed by the high feature space dimensionality of text learning tasks. The linked nature of social data causes new dimensions to be added to the feature space, which, also becomes sparser. Thus, efficient and scalable online feature selection becomes a crucial requirement of numerous large-scale social applications. This thesis proposes an online feature se...
متن کامل